Cooperative multi-agent reinforcement learning (c-MARL) is widely applied in safety-critical scenarios, thus the analysis of robustness for c-MARL models is profoundly important. However, robustness certification for c-MARLs has not yet been explored in the community. In this paper, we propose a novel certification method, which is the first work to leverage a scalable approach for c-MARLs to determine actions with guaranteed certified bounds. c-MARL certification poses two key challenges compared with single-agent systems: (i) the accumulated uncertainty as the number of agents increases; (ii) the potential lack of impact when changing the action of a single agent into a global team reward. These challenges prevent us from directly using existing algorithms. Hence, we employ the false discovery rate (FDR) controlling procedure considering the importance of each agent to certify per-state robustness and propose a tree-search-based algorithm to find a lower bound of the global reward under the minimal certified perturbation. As our method is general, it can also be applied in single-agent environments. We empirically show that our certification bounds are much tighter than state-of-the-art RL certification solutions. We also run experiments on two popular c-MARL algorithms: QMIX and VDN, in two different environments, with two and four agents. The experimental results show that our method produces meaningful guaranteed robustness for all models and environments. Our tool CertifyCMARL is available at https://github.com/TrustAI/CertifyCMA
translated by 谷歌翻译
时空视频接地(STVG)的重点是检索由自由形式的文本表达式描绘的特定物体的时空管。现有方法主要将这一复杂的任务视为平行框架的问题,因此遭受了两种类型的不一致缺点:特征对齐不一致和预测不一致。在本文中,我们提出了一个端到端的一阶段框架,称为时空的一致性变压器(STCAT),以减轻这些问题。特别是,我们引入了一个新颖的多模式模板,作为解决此任务的全球目标,该目标明确限制了接地区域并将所有视频框架之间的预测联系起来。此外,为了在足够的视频文本感知下生成上述模板,提出了一个编码器架构来进行有效的全局上下文建模。由于这些关键设计,STCAT享有更一致的跨模式特征对齐和管预测,而无需依赖任何预训练的对象探测器。广泛的实验表明,我们的方法在两个具有挑战性的视频基准(VIDSTG和HC-STVG)上胜过先前的最先进的,这说明了拟议框架的优越性,以更好地理解视觉与自然语言之间的关联。代码可在\ url {https://github.com/jy0205/stcat}上公开获得。
translated by 谷歌翻译
我们提出了一种从荧光X射线序列中提取冠状动脉血管的方法。给定源框架的血管结构,随后框架中的血管对应候选者是由新型的分层搜索方案生成的,以克服孔径问题。最佳对应关系是在马尔可夫随机字段优化框架内确定的。由于对比剂的流入,进行后处理以提取新近可见的血管分支。在18个序列的数据集上进行的定量和定性评估证明了该方法的有效性。
translated by 谷歌翻译
现有的自我监督的单眼估计方法可以摆脱昂贵的注释并获得令人鼓舞的结果。但是,当直接采用接受固定分辨率训练的模型以评估其他不同决议时,这些方法会遭受严重的性能降解。在本文中,我们通过学习场景深度的规模不变性,提出了一个分辨率自适应自我监督的单眼估计方法(RA-DEPTH)。具体而言,我们提出了一种简单而有效的数据增强方法,以生成具有任意尺度的同一场景的图像。然后,我们开发了一个双重高分辨率网络,该网络使用具有密集交互的多路径编码器和解码器来汇总多尺度特征,以进行准确的深度推理。最后,为了明确了解场景深度的规模不变性,我们在具有不同尺度的深度预测上制定了跨尺度的深度一致性损失。对Kitti,Make3D和NYU-V2数据集进行了广泛的实验表明,RA-DEPTH不仅可以实现最新的性能,而且还表现出很好的解决能力。
translated by 谷歌翻译
服务机器人安全有礼貌的机器人需要坚强地跟踪周围人,尤其是对于旅游指南机器人(TGR)。但是,由于以下原因,现有的多对象跟踪(MOT)或多人跟踪(MPT)方法不适用于TGR:1。缺乏相关的大型数据集;2.缺少适用的指标来评估跟踪器。在这项工作中,我们针对TGR的视觉感知任务,并介绍TGRDB数据集,TGRDB数据集是一种新颖的大型多人跟踪数据集,其中包含大约5.6小时的带注释视频和超过450个长期轨迹。此外,我们提出了一个更适合使用数据集评估跟踪器的指标。作为我们工作的一部分,我们提出了TGRMPT,这是一种新型的MPT系统,它结合了头部肩膀和全身的信息,并实现了最先进的性能。我们已经在https://github.com/wenwenzju/tgrmpt中发布了代码和数据集。
translated by 谷歌翻译
已知深层神经网络(DNN)容易受到后门攻击和对抗攻击的影响。在文献中,这两种攻击通常被视为明显的问题并分别解决,因为它们分别属于训练时间和推理时间攻击。但是,在本文中,我们发现它们之间有一个有趣的联系:对于具有后门种植的模型,我们观察到其对抗性示例具有与触发样品相似的行为,即都激活了同一DNN神经元的子集。这表明将后门种植到模型中会严重影响模型的对抗性例子。基于这一观察结果,我们设计了一种新的对抗性微调(AFT)算法,以防止后门攻击。我们从经验上表明,在5次最先进的后门攻击中,我们的船尾可以有效地擦除后门触发器,而无需在干净的样品上明显的性能降解,并显着优于现有的防御方法。
translated by 谷歌翻译
尽管在现实生活中取得了巨大成功,但深度加固学习(DRL)仍遭受三个关键问题,这是数据效率,缺乏可解释性和可转移性。最近的研究表明,将符号知识嵌入DRL是有希望解决这些挑战。灵感来自于此,我们介绍了一种具有象征性选项的新型深度加强学习框架。此框架具有循环培训程序,可通过规划自动从交互式轨迹中学到的行动模型和符号选项来指导政策的改进。学习的象征选项减轻了专家领域知识的密集要求,并提供了政策的内在可意识性。此外,通过使用动作模型规划,可以进一步提高可转移和数据效率。为了验证这一框架的有效性,我们分别对两个域名,蒙特沙姆的复仇和办公室世界进行实验。结果证明了可比性,提高了数据效率,可解释性和可转移性。
translated by 谷歌翻译
近年来,已经开发出各种基于梯度的方法来解决机器学习和计算机视觉地区的双层优化(BLO)问题。然而,这些现有方法的理论正确性和实际有效性总是依赖于某些限制性条件(例如,下层单身,LLS),这在现实世界中可能很难满足。此外,以前的文献仅证明了基于其特定的迭代策略的理论结果,因此缺乏一般的配方,以统一分析不同梯度的BLO的收敛行为。在这项工作中,我们从乐观的双级视点制定BLOS,并建立一个名为Bi-Level血液血统聚合(BDA)的新梯度的算法框架,以部分地解决上述问题。具体而言,BDA提供模块化结构,以分级地聚合上层和下层子问题以生成我们的双级迭代动态。从理论上讲,我们建立了一般会聚分析模板,并导出了一种新的证据方法,以研究基于梯度的BLO方法的基本理论特性。此外,这项工作系统地探讨了BDA在不同优化场景中的收敛行为,即,考虑从解决近似子问题返回的各种解决方案质量(即,全局/本地/静止解决方案)。广泛的实验证明了我们的理论结果,并展示了所提出的超参数优化和元学习任务算法的优越性。源代码可在https://github.com/vis-opt-group/bda中获得。
translated by 谷歌翻译
Optical coherence tomography (OCT) captures cross-sectional data and is used for the screening, monitoring, and treatment planning of retinal diseases. Technological developments to increase the speed of acquisition often results in systems with a narrower spectral bandwidth, and hence a lower axial resolution. Traditionally, image-processing-based techniques have been utilized to reconstruct subsampled OCT data and more recently, deep-learning-based methods have been explored. In this study, we simulate reduced axial scan (A-scan) resolution by Gaussian windowing in the spectral domain and investigate the use of a learning-based approach for image feature reconstruction. In anticipation of the reduced resolution that accompanies wide-field OCT systems, we build upon super-resolution techniques to explore methods to better aid clinicians in their decision-making to improve patient outcomes, by reconstructing lost features using a pixel-to-pixel approach with an altered super-resolution generative adversarial network (SRGAN) architecture.
translated by 谷歌翻译
We introduce a new tool for stochastic convex optimization (SCO): a Reweighted Stochastic Query (ReSQue) estimator for the gradient of a function convolved with a (Gaussian) probability density. Combining ReSQue with recent advances in ball oracle acceleration [CJJJLST20, ACJJS21], we develop algorithms achieving state-of-the-art complexities for SCO in parallel and private settings. For a SCO objective constrained to the unit ball in $\mathbb{R}^d$, we obtain the following results (up to polylogarithmic factors). We give a parallel algorithm obtaining optimization error $\epsilon_{\text{opt}}$ with $d^{1/3}\epsilon_{\text{opt}}^{-2/3}$ gradient oracle query depth and $d^{1/3}\epsilon_{\text{opt}}^{-2/3} + \epsilon_{\text{opt}}^{-2}$ gradient queries in total, assuming access to a bounded-variance stochastic gradient estimator. For $\epsilon_{\text{opt}} \in [d^{-1}, d^{-1/4}]$, our algorithm matches the state-of-the-art oracle depth of [BJLLS19] while maintaining the optimal total work of stochastic gradient descent. We give an $(\epsilon_{\text{dp}}, \delta)$-differentially private algorithm which, given $n$ samples of Lipschitz loss functions, obtains near-optimal optimization error and makes $\min(n, n^2\epsilon_{\text{dp}}^2 d^{-1}) + \min(n^{4/3}\epsilon_{\text{dp}}^{1/3}, (nd)^{2/3}\epsilon_{\text{dp}}^{-1})$ queries to the gradients of these functions. In the regime $d \le n \epsilon_{\text{dp}}^{2}$, where privacy comes at no cost in terms of the optimal loss up to constants, our algorithm uses $n + (nd)^{2/3}\epsilon_{\text{dp}}^{-1}$ queries and improves recent advancements of [KLL21, AFKT21]. In the moderately low-dimensional setting $d \le \sqrt n \epsilon_{\text{dp}}^{3/2}$, our query complexity is near-linear.
translated by 谷歌翻译